If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2=24
We move all terms to the left:
p^2-(24)=0
a = 1; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·1·(-24)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*1}=\frac{0-4\sqrt{6}}{2} =-\frac{4\sqrt{6}}{2} =-2\sqrt{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*1}=\frac{0+4\sqrt{6}}{2} =\frac{4\sqrt{6}}{2} =2\sqrt{6} $
| -9x+1=-8X+ | | 2x2+2x-243=0 | | x+(3x+6)=100 | | 2x+2x/4+4=16 | | 25x^2+48x+25=0 | | 57=-3+4(x-3)= | | (1-x)^7-0.02=0 | | 2+7h=10h+8 | | 3−6k=-6k+3 | | 2x+2x+4=16 | | 7x+9=11x–79 | | 8m+2=-3+8m+5 | | -x+14=x | | 6j=-4+6j | | 0=t−t | | y.4y=48 | | 5(3x+4)=-60 | | 9m+7=7+9m | | 7t+2=7t | | 5/2n=-15/4 | | 14-y=6y | | 9y+32=13y | | 4x+6x=2(x+6) | | (2x/5)-1=7 | | 12x^2+25x+16=0 | | 3-3m=6 | | 7x^2=1/3x | | 3x^+16x-12=0 | | 2x+x+6=0 | | √7x-6=6 | | 13x-2(8+5.x)=12-11 | | x²-10x+21=0 |